
Professor Mayur Naik

CIS 7000 - Fall 2024

Background

Slides adapted in part from UC Berkeley’s CS182: Designing, Visualizing and Understanding Deep Neural
Networks (Spring’21) and Chapter 7 of Jurafsky/Martin’s book “Speech and Language Processing” (3rd ed).

● The Turing Test

● Overview of LLMs

○ How do LLMs work, What LLMs can do, Limitations of LLMs,

What is the future

● Course Logistics

Recap of Last Lecture

Who’s In CIS 7000?

● Homework 0 “Exploring LLMs” is due on Sunday Sept 8 at 11:59 pm ET. Available
via Canvas and https://llm-class.github.io/homeworks.html. Late submissions will
not be accepted!

● Homework 1 “Transformer from Scratch” will be released on Monday Sept 9; much
more work than Homework 0! Due in 3 parts: Wed Sept 18 (Part 1), Wed Sept 25
(Part 2), and Wed Oct 2 at 11:59 pm ET (Final).

Announcements

https://llm-class.github.io/homeworks.html

● Language Modeling

● Perplexity Evaluation

● Feedforward Neural Networks

○ Forward pass

○ Loss function

○ Back-propagation

Today’s Agenda

The task of computing P(w | h), the probability distribution of possible words w
from a vocabulary given some history (sequence of words) h.

What is Language Modeling?

… and thanks for all the _____

fish 0.70
memories 0.10
support 0.05
help 0.05
love 0.04
time 0.02
work 0.02
fun 0.01
… ...

The task of computing P(w | h), the probability distribution of possible words w
from a vocabulary given some history (sequence of words) h.

Enables to compute probabilities of entire sentences by applying chain rule of
probability:

P(w
1
 w

2
 … w

k
) = P(w

1
).P(w

2
|w

1
).P(w

3
|w

1:2
)...P(w

k
|w

1:k-1
) =

Question: Why is this task important?

What is Language Modeling?

● Generating more plausible sentences.

○ P(“I saw a van”) > P(“eyes awe of an”)

○ Many NLP applications: correcting grammar or spelling errors, machine
translation, speech recognition, content summarization, conversational
agents, etc.

● More importantly, Large Language Models are built by training them
on this task!

Motivation for Language Modeling

● A problem: computing P(w | h) exactly is infeasible for arbitrary history h since
language is creative and h might have never occurred before!

● Idea: the Markov assumption: approximate the history by just the last few words.

P(wk|w1:k-1) ≈ P(wk|wk-n+1:k-1)

● Example: n-gram models: look at n-1 words in the history. n=2 is bigrams, n=3 is
trigrams, etc.

LLMs use *much* larger n, in the thousands or even millions!

An Approximation

Question: What is the objective of this model?

Start with a dataset Dtrain = { (h1, w1), …, (hn, wn) }.

Goal: Train a language model Pθ with parameters (weights) θ such that Pθ(h) computes
a probability distribution over the vocabulary of all possible words.

Estimating Probabilities

Assumption: i.i.d. (independent and
identically distributed)

A good model is one that makes the data look probable. Therefore, choose θ such that

 P(Dtrain) = P(hi).Pθ(wi | hi) is maximized.

Multiplying Probabilities

P(Dtrain) = P(hi).Pθ(wi | hi)

log P(Dtrain) = log P(hi) + log Pθ(wi | hi) = log Pθ(wi | hi) + const

θ* ← arg max log Pθ(wi | hi) maximum likelihood estimation (MLE)

θ* ← arg min – log Pθ(wi | hi) negative log likelihood (NLL)

Multiplying together many numbers <= 1

θ

θ
Also called cross-entropy

This is our loss function

Does our LM prefer good sentences over bad ones?

- Assign higher probability to real or frequently observed sentences
than ungrammatical or rarely observed ones?

Suppose we train Pθ (more on how to do this later in today’s lecture!)

How do we tell how good our LM is?

Evaluation: How Good is Our Model?

Train the parameters of the LM on a training set (Dtrain).

Test the LM’s performance on data we haven’t seen.

- A test set is an unseen dataset different from Dtrain, totally unused.

- An evaluation metric tells us how well our model does on test set.

Extrinsic Evaluation of LMs

Best evaluation for comparing LMs A and B.

Put each model in a task (e.g. spelling corrector, speech recognizer, machine
translation system).

Run the task and get an accuracy for A and B.
- (e.g. how many misspelled words corrected properly, how many words

translated properly).

Whichever model has higher accuracy is better.

Problem: Time-consuming.

Common intrinsic evaluation metric for LMs: perplexity.

Bad approximation unless the test data looks just like the training data.

Generally only useful in pilot experiments.

But it is helpful to think about (as long as extrinsic evaluation is also done).

Let’s look at different intuitions of perplexity and define it!

Intrinsic Evaluation of LMs

The Shannon Game: how well can we predict the next word in a given sentence?

I always order pizza with cheese and _______

The 33rd President of the US was ______

I saw a _____

A good LM is one that assigns a higher probability to the word that actually occurs.

Intuition of Perplexity

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
…
fried rice 0.0001
…
and 1e-100

The best LM is one that best predicts an unseen test set Dtest.

Perplexity is 2J where J is cross entropy loss on test set: J = – log Pθ(wi | hi)

Perplexity >= 1. Lower is better.

Equivalently, perplexity of a sentence w
1
 w

2
 … w

n
 is Pθ(w

1
 w

2
 … w

n
) which is

the same as

That is, it is the probability of the sentence normalized by the number of words.

Perplexity

Another Intuition of Perplexity

Perplexity is the average branching factor at any point in a sentence.

Example 1: task is to recognize sentence of random digits. Average branching factor
at each step is 10, so perplexity is 10.

Example 2: task is to recognize Operator (1 in 4), Sales (1 in 4), Tech Support (1 in 4),
and 30,000 names (1 in 120,000 each). Perplexity is ~ 53.

Lower Perplexity = Better Model

Training on 38 million words and testing on 1.5 million words from the WSJ.

Further Reading: Hugging Face doc article on Perplexity of fixed-length models.

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

https://huggingface.co/docs/transformers/perplexity

Feedforward Neural Network for
Language Modeling

Sketch of feedforward neural language model
with 3-word input context.

Picture Credit: Chapter 7 of Jurafsky/Martin’s
book “Speech and Language Processing” (3rd
ed).

Architecture and Illustration of Forward Pass

Y. Benjio et al. A Neural Probabilistic Language Model. JMLR 2003.

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Architecture and Illustration of Forward Pass

At each timestep t, the network:

1. computes a d-dimensional embedding for each
context word (by multiplying a one-hot vector
by embedding matrix E)

2. concatenates the 3 resulting embeddings to
produce embedding layer e

3. e is multiplied by a weight matrix W and then an
activation function is applied element-wise to
produce hidden layer h

4. h is then multiplied by another weight matrix U

5. finally, a softmax output layer predicts at each
node i the probability that the next word wt will
be vocabulary word Vi

Loss Function: Negative Log Likelihood (NLL)

The parameter update for stochastic
gradient descent for cross-entropy loss L
from step s to s+1 is:

This gradient can be computed in any
standard neural network framework (e.g.
Pytorch) which will then backpropagate
through θ = E, W, U.

Forward Pass and Loss Function in Equations

e = [E xt−3; E xt−2; E xt−1]

h = σ (W e)

z = U h

y = softmax(z)

L = − y (log y)

where y is one-hot vector
representing ground truth.

ˆ

ˆ T

z = W x

y = softmax(z)

L = – y log y

Short Primer on Back-Propagation

Let’s consider a simple feedforward network:

x1

^

^

x2

z1

z2

z3

y1

y2

y3

L^

^

^

where y is one-hot vector
representing ground truth.

where

Short Primer on Back-Propagation

Computation Graph:

W z y L^

Backward Differentiation:

(linear in this example
 but a DAG in general)

W z y L^

(by chain rule of probability)

^

^

z = W x

y = softmax(z)

L = – y log y

Short Primer on Back-Propagation

z = W x

y = softmax(z)

L = – y log ŷ

^

since and

Gradient of Loss with Respect to Predicted Probabilities:

x1

x2

z1

z2

z3

y1

y2

y3

L^

^

^

Short Primer on Back-Propagation

z = W x

y = softmax(z)

L = – y log ŷ

^

since and

Jacobian of Softmax with Respect to Logits:

x1

x2

z1

z2

z3

y1

y2

y3

L^

^

^

Short Primer on Back-Propagation

z = W x

y = softmax(z)

L = – y log ŷ

^

since and

Jacobian of Logits with Respect to Weights:

x1

x2

z1

z2

z3

y1

y2

y3

L^

^

^

Short Primer on Back-Propagation

z = W x

y = softmax(z)

L = – y log ŷ

^

Putting it all together:

. .

. .

Pros/Cons of Feedforward Neural Network as Language Model

Improvements over n-gram LM:

- No sparsity problem.
- No need to store all observed n-grams.

Remaining problems:

- Fixed window is too small.
- Model size (W) increases for longer input

context.
- Window can never be large enough!
- Each xi is multiplied by completely

different weights in W, so no symmetry in
how the inputs are processed.

Up Next …

● Homework 1 “Transformer from Scratch” will be released on Sept 9.

● Sept 9 Lecture: From Pytorch to Hugging Face: How to run your own LLM

Involves hands-on Jupyter Notebook exercises by TAs!

